Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3745, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702304

RESUMEN

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Asunto(s)
Diferenciación Celular , Variaciones en el Número de Copia de ADN , Proteína Proto-Oncogénica N-Myc , Cresta Neural , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Cresta Neural/metabolismo , Cresta Neural/patología , Femenino , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Aberraciones Cromosómicas , Células Madre Embrionarias Humanas/metabolismo , Transcriptoma , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
2.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223992

RESUMEN

The generation of the post-cranial embryonic body relies on the coordinated production of spinal cord neurectoderm and presomitic mesoderm cells from neuromesodermal progenitors (NMPs). This process is orchestrated by pro-neural and pro-mesodermal transcription factors that are co-expressed in NMPs together with Hox genes, which are essential for axial allocation of NMP derivatives. NMPs reside in a posterior growth region, which is marked by the expression of Wnt, FGF and Notch signalling components. Although the importance of Wnt and FGF in influencing the induction and differentiation of NMPs is well established, the precise role of Notch remains unclear. Here, we show that the Wnt/FGF-driven induction of NMPs from human embryonic stem cells (hESCs) relies on Notch signalling. Using hESC-derived NMPs and chick embryo grafting, we demonstrate that Notch directs a pro-mesodermal character at the expense of neural fate. We show that Notch also contributes to activation of HOX gene expression in human NMPs, partly in a non-cell-autonomous manner. Finally, we provide evidence that Notch exerts its effects via the establishment of a negative-feedback loop with FGF signalling.


Asunto(s)
Tipificación del Cuerpo , Genes Homeobox , Animales , Embrión de Pollo , Humanos , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Mesodermo/metabolismo , Médula Espinal , Expresión Génica , Regulación del Desarrollo de la Expresión Génica
3.
Vascul Pharmacol ; 150: 107178, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37137436

RESUMEN

Flowing blood regulates vascular development, homeostasis and disease by generating wall shear stress which has major effects on endothelial cell (EC) physiology. Low oscillatory shear stress (LOSS) induces a form of cell plasticity called endothelial-to-mesenchymal transition (EndMT). This process has divergent effects; in embryos LOSS-induced EndMT drives the development of atrioventricular valves, whereas in adult arteries it is associated with inflammation and atherosclerosis. The Notch ligand DLL4 is essential for LOSS-dependent valve development; here we investigated whether DLL4 is required for responses to LOSS in adult arteries. Analysis of cultured human coronary artery EC revealed that DLL4 regulates the transcriptome to induce markers of EndMT and inflammation under LOSS conditions. Consistently, genetic deletion of Dll4 from murine EC reduced SNAIL (EndMT marker) and VCAM-1 (inflammation marker) at a LOSS region of the murine aorta. We hypothesized that endothelial Dll4 is pro-atherogenic but this analysis was confounded because endothelial Dll4 negatively regulated plasma cholesterol levels in hyperlipidemic mice. We conclude that endothelial DLL4 is required for LOSS-induction of EndMT and inflammation regulators at atheroprone regions of arteries, and is also a regulator of plasma cholesterol.


Asunto(s)
Aterosclerosis , Vasos Coronarios , Células Endoteliales , Animales , Ratones , Humanos , Células Cultivadas , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Transición Epitelial-Mesenquimal , Aterosclerosis/metabolismo , Masculino
4.
Arterioscler Thromb Vasc Biol ; 43(4): 547-561, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36794585

RESUMEN

BACKGROUND: Hemodynamic wall shear stress (WSS) exerted on the endothelium by flowing blood determines the spatial distribution of atherosclerotic lesions. Disturbed flow (DF) with a low WSS magnitude and reversing direction promotes atherosclerosis by regulating endothelial cell (EC) viability and function, whereas un-DF which is unidirectional and of high WSS magnitude is atheroprotective. Here, we study the role of EVA1A (eva-1 homolog A), a lysosome and endoplasmic reticulum-associated protein linked to autophagy and apoptosis, in WSS-regulated EC dysfunction. METHODS: The effect of WSS on EVA1A expression was studied using porcine and mouse aortas and cultured human ECs exposed to flow. EVA1A was silenced in vitro in human ECs and in vivo in zebrafish using siRNA (small interfering RNA) and morpholinos, respectively. RESULTS: EVA1A was induced by proatherogenic DF at both mRNA and protein levels. EVA1A silencing resulted in decreased EC apoptosis, permeability, and expression of inflammatory markers under DF. Assessment of autophagic flux using the autolysosome inhibitor, bafilomycin coupled to the autophagy markers LC3-II (microtubule-associated protein 1 light chain 3-II) and p62, revealed that EVA1A knockdown promotes autophagy when ECs are exposed to DF, but not un-DF . Blocking autophagic flux led to increased EC apoptosis in EVA1A-knockdown cells exposed to DF, suggesting that autophagy mediates the effects of DF on EC dysfunction. Mechanistically, EVA1A expression was regulated by flow direction via TWIST1 (twist basic helix-loop-helix transcription factor 1). In vivo, knockdown of EVA1A orthologue in zebrafish resulted in reduced EC apoptosis, confirming the proapoptotic role of EVA1A in the endothelium. CONCLUSIONS: We identified EVA1A as a novel flow-sensitive gene that mediates the effects of proatherogenic DF on EC dysfunction by regulating autophagy.


Asunto(s)
Aterosclerosis , Pez Cebra , Animales , Humanos , Ratones , Apoptosis , Aterosclerosis/patología , Autofagia , Endotelio/metabolismo , Porcinos , Pez Cebra/genética
5.
Elife ; 112022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36154671

RESUMEN

The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body. Here we employ human embryonic stem cell differentiation to define how neuromesodermal progenitor (NMP)-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.


Asunto(s)
Mesodermo , Cresta Neural , Diferenciación Celular/genética , Humanos , Factores de Transcripción/metabolismo , Vía de Señalización Wnt
6.
Sci Adv ; 8(35): eabo7958, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044575

RESUMEN

Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína Jagged-1 , Placa Aterosclerótica , Receptor Notch4 , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Transducción de Señal , Porcinos
7.
Sci Rep ; 10(1): 3870, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32099026

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Commun ; 11(1): 214, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924781

RESUMEN

Neutrophils are implicated in the pathogenesis of atherosclerosis but are seldom detected in atherosclerotic plaques. We investigated whether neutrophil-derived microvesicles may influence arterial pathophysiology. Here we report that levels of circulating neutrophil microvesicles are enhanced by exposure to a high fat diet, a known risk factor for atherosclerosis. Neutrophil microvesicles accumulate at disease-prone regions of arteries exposed to disturbed flow patterns, and promote vascular inflammation and atherosclerosis in a murine model. Using cultured endothelial cells exposed to disturbed flow, we demonstrate that neutrophil microvesicles promote inflammatory gene expression by delivering miR-155, enhancing NF-κB activation. Similarly, neutrophil microvesicles increase miR-155 and enhance NF-κB at disease-prone sites of disturbed flow in vivo. Enhancement of atherosclerotic plaque formation and increase in macrophage content by neutrophil microvesicles is dependent on miR-155. We conclude that neutrophils contribute to vascular inflammation and atherogenesis through delivery of microvesicles carrying miR-155 to disease-prone regions.


Asunto(s)
Aterosclerosis/metabolismo , Endotelio/metabolismo , MicroARNs/metabolismo , Neutrófilos/metabolismo , Animales , Aterosclerosis/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Endoteliales , Endotelio/patología , Regulación de la Expresión Génica , Humanos , Macrófagos/metabolismo , Ratones , Ratones Noqueados para ApoE , MicroARNs/genética , FN-kappa B/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
9.
Cardiovasc Res ; 116(7): 1300-1310, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504243

RESUMEN

AIMS: Atherosclerosis develops near branches and bends of arteries that are exposed to disturbed blood flow which exerts low wall shear stress (WSS). These mechanical conditions alter endothelial cells (EC) by priming them for inflammation and by inducing turnover. Homeobox (Hox) genes are developmental genes involved in the patterning of embryos along their anterior-posterior and proximal-distal axes. Here we identified Hox genes that are regulated by WSS and investigated their functions in adult arteries. METHODS AND RESULTS: EC were isolated from inner (low WSS) and outer (high WSS) regions of the porcine aorta and the expression of Hox genes was analysed by quantitative real-time PCR. Several Hox genes (HoxA10, HoxB4, HoxB7, HoxB9, HoxD8, HoxD9) were significantly enriched at the low WSS compared to the high WSS region. Similarly, studies of cultured human umbilical vein EC (HUVEC) or porcine aortic EC revealed that the expression of multiple Hox genes (HoxA10, HoxB9, HoxD8, HoxD9) was enhanced under low (4 dyn/cm2) compared to high (13 dyn/cm2) WSS conditions. Gene silencing studies identified Hox genes (HoxB9, HoxD8, HoxD9) that are positive regulators of inflammatory molecule expression in EC exposed to low WSS, and others (HoxB9, HoxB7, HoxB4) that regulated EC turnover. We subsequently focused on HoxB9 because it was strongly up-regulated by low WSS and, uniquely, was a driver of both inflammation and proliferation. At a mechanistic level, we demonstrate using cultured EC and murine models that bone morphogenic protein 4 (BMP4) is an upstream regulator of HoxB9 which elicits inflammation via induction of numerous inflammatory mediators including TNF and downstream NF-κB activation. Moreover, the BMP4-HoxB9-TNF pathway was potentiated by hypercholesterolaemic conditions. CONCLUSIONS: Low WSS induces multiple Hox genes that control the activation state and turnover of EC. Notably, low WSS activates a BMP4-HoxB9-TNF signalling pathway to initiate focal arterial inflammation, thereby demonstrating integration of the BMP and Hox systems in vascular pathophysiology.


Asunto(s)
Aorta Torácica/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Proteínas de Homeodominio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/metabolismo , Placa Aterosclerótica , Animales , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Proteína Morfogenética Ósea 4/genética , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Flujo Sanguíneo Regional , Transducción de Señal , Estrés Mecánico , Sus scrofa , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
Nat Rev Cardiol ; 17(1): 52-63, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31366922

RESUMEN

Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFß, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.


Asunto(s)
Aterosclerosis/genética , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mecanotransducción Celular/genética , Animales , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Endotelio Vascular/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Neovascularización Fisiológica/genética , Fenotipo , Flujo Sanguíneo Regional , Factores de Riesgo , Estrés Mecánico , Remodelación Vascular/genética
11.
J Cell Sci ; 132(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31076511

RESUMEN

Endothelial cell (EC) sensing of fluid shear stress direction is a critical determinant of vascular health and disease. Unidirectional flow induces EC alignment and vascular homeostasis, whereas bidirectional flow has pathophysiological effects. ECs express several mechanoreceptors that respond to flow, but the mechanism for sensing shear stress direction is poorly understood. We determined, by using in vitro flow systems and magnetic tweezers, that ß1 integrin is a key sensor of force direction because it is activated by unidirectional, but not bidirectional, shearing forces. ß1 integrin activation by unidirectional force was amplified in ECs that were pre-sheared in the same direction, indicating that alignment and ß1 integrin activity has a feedforward interaction, which is a hallmark of system stability. En face staining and EC-specific genetic deletion studies in the murine aorta revealed that ß1 integrin is activated and is essential for EC alignment at sites of unidirectional flow but is not activated at sites of bidirectional flow. In summary, ß1 integrin sensing of unidirectional force is a key mechanism for decoding blood flow mechanics to promote vascular homeostasis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Aorta/fisiología , Integrina beta1/metabolismo , Flujo Sanguíneo Regional/fisiología , Animales , Línea Celular , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Integrina beta1/genética , Mecanorreceptores/fisiología , Ratones , Ratones Noqueados , Estrés Fisiológico/fisiología
13.
Cardiovasc Drugs Ther ; 33(2): 231-237, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30809744

RESUMEN

BACKGROUND: Endothelial cell (EC) dysfunction (enhanced inflammation, proliferation and permeability) is the initial trigger for atherosclerosis. Atherosclerosis shows preferential development near branches and bends exposed to disturbed blood flow. By contrast, sites that are exposed to non-disturbed blood flow are atheroprotected. Disturbed flow promotes atherosclerosis by promoting EC dysfunction. Blood flow controls EC function through transcriptional and post-transcriptional mechanisms that are incompletely understood. METHODS AND RESULTS: We identified the developmental transcription factors Twist1 and GATA4 as being enriched in EC at disturbed flow, atheroprone regions of the porcine aorta in a microarray study. Further work using the porcine and murine aortae demonstrated that Twist1 and GATA4 expression was enhanced at the atheroprone, disturbed flow sites in vivo. Using controlled in vitro flow systems, the expression of Twist1 and GATA4 was enhanced under disturbed compared to non-disturbed flow in cultured cells. Disturbed flow promoted Twist1 expression through a GATA4-mediated transcriptional mechanism as revealed by a series of in vivo and in vitro studies. GATA4-Twist1 signalling promoted EC proliferation, inflammation, permeability and endothelial-to-mesenchymal transition (EndoMT) under disturbed flow, leading to atherosclerosis development, as shown in a combination of in vitro and in vivo studies using GATA4 and Twist1-specific siRNA and EC-specific GATA4 and Twist1 Knock out (KO) mice. CONCLUSIONS: We revealed that GATA4-Twist1-Snail signalling triggers EC dysfunction and atherosclerosis; this work could lead to the development of novel anti-atherosclerosis therapeutics.


Asunto(s)
Arterias/metabolismo , Aterosclerosis/metabolismo , Endotelio Vascular/metabolismo , Factor de Transcripción GATA4/metabolismo , Mecanotransducción Celular , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Arterias/patología , Arterias/fisiopatología , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Transición Epitelial-Mesenquimal , Humanos , Placa Aterosclerótica , Flujo Sanguíneo Regional
14.
Stem Cell Reports ; 11(3): 784-794, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208304

RESUMEN

Hematopoietic stem cells (HSCs) develop in the embryonic aorta-gonad-mesonephros (AGM) region and subsequently relocate to fetal liver. Runx1 transcription factor is essential for HSC development, but is largely dispensable for adult HSCs. Here, we studied tamoxifen-inducible Runx1 inactivation in vivo. Induction at pre-liver stages (up to embryonic day 10.5) reduced erythromyeloid progenitor numbers, but surprisingly did not block the appearance of Runx1-null HSCs in liver. By contrast, ex vivo analysis showed an absolute Runx1 dependency of HSC development in the AGM region. We found that, contrary to current beliefs, significant Cre-inducing tamoxifen activity persists in mouse blood for at least 72 hr after injection. This deferred recombination can hit healthy HSCs, which escaped early Runx1 ablation and result in appearance of Runx1-null HSCs in liver. Such extended recombination activity in vivo is a potential source of misinterpretation, particularly in analysis of dynamic developmental processes during embryogenesis.


Asunto(s)
Aorta/embriología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Madre Hematopoyéticas/citología , Hígado/embriología , Mesonefro/embriología , Animales , Aorta/citología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Eliminación de Gen , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Hígado/citología , Mesonefro/citología , Ratones Endogámicos C57BL , Ratones Transgénicos
16.
Cardiovasc Res ; 114(4): 565-577, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29309526

RESUMEN

Atherosclerosis is an inflammatory disease resulting in the hardening and thickening of the wall of arteries and the formation of plaques, which comprise immune cells, mesenchymal cells, lipids, and extracellular matrix. The source of mesenchymal cells in the atherosclerotic plaques has been under scrutiny for years. Current endothelial-lineage tracing studies indicate that the endothelium is a source for plaque-associated mesenchymal cells. Endothelial cells can acquire a mesenchymal phenotype through endothelial-mesenchymal transition (EndMT), wherein the expression of endothelial markers and functions is lost and the expression of mesenchymal cell marker and functions acquired. Furthermore, EndMT can result in delamination and migration of endothelial cell-derived mesenchymal cells into the underlying tissue. Here, we review the contribution of EndMT in vascular disease focusing on atherosclerosis and describe the major biochemical and biomechanical signalling pathways in EndMT during atherosclerosis progression. Furthermore, we address how the well-established systemic atherosclerosis risk factors might facilitate EndMT during atherosclerosis.


Asunto(s)
Arterias/patología , Aterosclerosis/patología , Células Endoteliales/patología , Transición Epitelial-Mesenquimal , Animales , Arterias/metabolismo , Arterias/fisiopatología , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Linaje de la Célula , Plasticidad de la Célula , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Hemodinámica , Humanos , Mediadores de Inflamación/metabolismo , Fenotipo , Placa Aterosclerótica , Transducción de Señal , Remodelación Vascular
17.
Cardiovasc Res ; 114(2): 324-335, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126223

RESUMEN

Objective: Atherosclerosis is a focal disease occurring at arterial sites of disturbed blood flow that generates low oscillating shear stress. Endothelial inflammatory signalling is enhanced at sites of disturbed flow via mechanisms that are incompletely understood. The influence of disturbed flow on endothelial adenosine triphosphate (ATP) receptors and downstream signalling was assessed. Methods and results: Cultured human endothelial cells were exposed to atheroprotective (high uniform) or atheroprone (low oscillatory) shear stress for 72 h prior to assessment of ATP responses. Imaging of cells loaded with a calcium-sensitive fluorescent dye revealed that atheroprone flow enhanced extracellular calcium influx in response to 300 µM 2'(3')-O-(4-Benzoylbenzoyl) adenosine-5'-triphosphate. Pre-treatment with pharmacological inhibitors demonstrated that this process required purinergic P2X7 receptors. The mechanism involved altered expression of P2X7, which was induced by atheroprone flow conditions in cultured cells. Similarly, en face staining of the murine aorta revealed enriched P2X7 expression at an atheroprone site. Functional studies in cultured endothelial cells showed that atheroprone flow induced p38 phosphorylation and up-regulation of E-selectin and IL-8 secretion via a P2X7-dependent mechanism. Moreover, genetic deletion of P2X7 significantly reduced E-selectin at atheroprone regions of the murine aorta. Conclusions: These findings reveal that P2X7 is regulated by shear forces leading to its accumulation at atheroprone sites that are exposed to disturbed patterns of blood flow. P2X7 promotes endothelial inflammation at atheroprone sites by transducing ATP signals into p38 activation. Thus P2X7 integrates vascular mechanical responses with purinergic signalling to promote endothelial dysfunction and may provide an attractive potential therapeutic target to prevent or reduce atherosclerosis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aterosclerosis/enzimología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Inflamación/enzimología , Mecanotransducción Celular , Receptores Purinérgicos P2X7/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Selectina E/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/genética , Inflamación/patología , Interleucina-8/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Placa Aterosclerótica , Receptores Purinérgicos P2X7/genética , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Tiempo
18.
J Exp Med ; 214(12): 3731-3751, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29093060

RESUMEN

In the developing embryo, hematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region, but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA sequencing over these spatiotemporal transitions in the AGM region and supportive OP9 cell line. Screening several proteins through an ex vivo reaggregate culture system, we identify BMPER as a novel positive regulator of HSC development. We demonstrate that BMPER is associated with BMP signaling inhibition, but is transcriptionally induced by BMP4, suggesting that BMPER contributes to the precise control of BMP activity within the AGM region, enabling the maturation of HSCs within a BMP-negative environment. These findings and the availability of our transcriptional data through an accessible interface should provide insight into the maintenance and potential derivation of HSCs in culture.


Asunto(s)
Aorta/metabolismo , Diferenciación Celular , Gónadas/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mesonefro/metabolismo , Animales , Aorta/embriología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Diferenciación Celular/genética , Análisis por Conglomerados , Retroalimentación Fisiológica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Gónadas/embriología , Mesodermo/metabolismo , Mesonefro/embriología , Ratones Endogámicos C57BL , Transducción de Señal , Proteínas Smad/metabolismo , Nicho de Células Madre/genética , Factores de Tiempo
20.
Arterioscler Thromb Vasc Biol ; 37(11): 2087-2101, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28882872

RESUMEN

OBJECTIVE: Atherosclerosis develops near branches and bends of arteries that are exposed to low shear stress (mechanical drag). These sites are characterized by excessive endothelial cell (EC) proliferation and inflammation that promote lesion initiation. The transcription factor HIF1α (hypoxia-inducible factor 1α) is canonically activated by hypoxia and has a role in plaque neovascularization. We studied the influence of shear stress on HIF1α activation and the contribution of this noncanonical pathway to lesion initiation. APPROACH AND RESULTS: Quantitative polymerase chain reaction and en face staining revealed that HIF1α was expressed preferentially at low shear stress regions of porcine and murine arteries. Low shear stress induced HIF1α in cultured EC in the presence of atmospheric oxygen. The mechanism involves the transcription factor nuclear factor-κB that induced HIF1α transcripts and induction of the deubiquitinating enzyme Cezanne that stabilized HIF1α protein. Gene silencing revealed that HIF1α enhanced proliferation and inflammatory activation in EC exposed to low shear stress via induction of glycolysis enzymes. We validated this observation by imposing low shear stress in murine carotid arteries (partial ligation) that upregulated the expression of HIF1α, glycolysis enzymes, and inflammatory genes and enhanced EC proliferation. EC-specific genetic deletion of HIF1α in hypercholesterolemic apolipoprotein E-defecient mice reduced inflammation and endothelial proliferation in partially ligated arteries, indicating that HIF1α drives inflammation and vascular dysfunction at low shear stress regions. CONCLUSIONS: Mechanical low shear stress activates HIF1α at atheroprone regions of arteries via nuclear factor-κB and Cezanne. HIF1α promotes atherosclerosis initiation at these sites by inducing excessive EC proliferation and inflammation via the induction of glycolysis enzymes.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/metabolismo , Mecanotransducción Celular , Placa Aterosclerótica , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Endopeptidasas/metabolismo , Células Endoteliales/patología , Inducción Enzimática , Femenino , Predisposición Genética a la Enfermedad , Glucólisis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Ratones Noqueados , FN-kappa B/metabolismo , Oxígeno/metabolismo , Fenotipo , Estabilidad Proteica , Proteolisis , Interferencia de ARN , Flujo Sanguíneo Regional , Estrés Mecánico , Sus scrofa , Factores de Tiempo , Transfección , Ubiquitinación , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...